Marginal donors: Young vs. Old

Why we should prefer older donors

Geir Mjøen, Oslo, Norway

- Long term risks in kidney donors
- Interpretation
- Consequences
- Recommendation

Kidney donors

Donors are healthy at the time of donation.

Mean age is usually around 40 years.

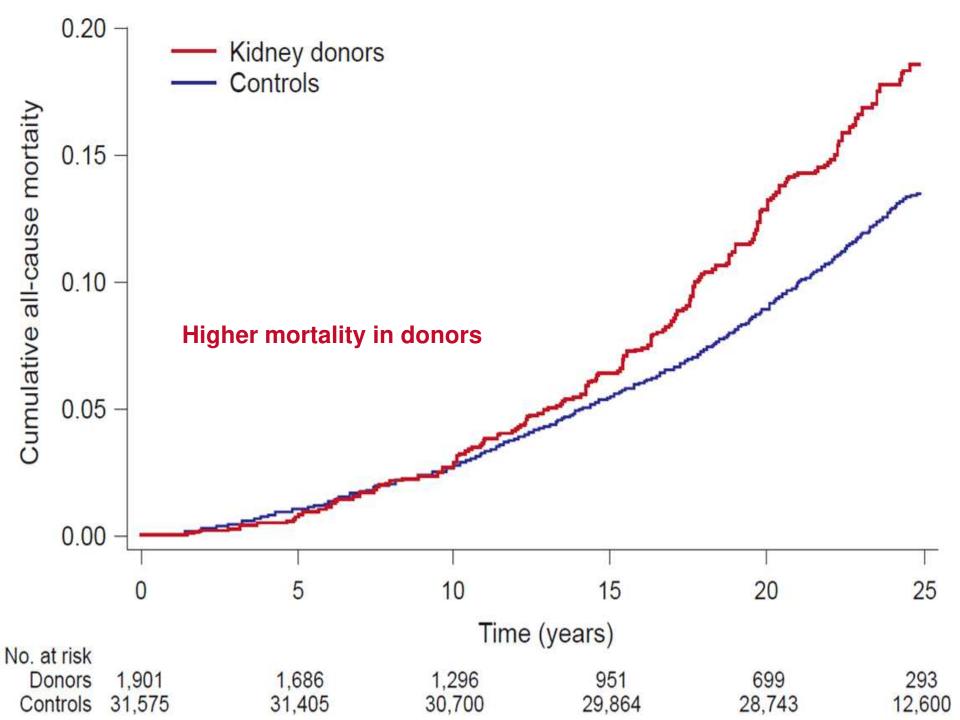
 Donors have been examined physically, with blood tests and radiology, and declared healthy.

Follow-up time

 Long follow-up time is needed to uncover longterm risks after donation

Harmful effects may take decades

Mortality


http://www.kidney-international.org

clinical investigation

© 2013 International Society of Nephrology

Long-term risks for kidney donors

Geir Mjøen¹, Stein Hallan^{2,3}, Anders Hartmann¹, Aksel Foss¹, Karsten Midtvedt¹, Ole Øyen¹, Anna Reisæter¹, Per Pfeffer¹, Trond Jenssen¹, Torbjørn Leivestad⁴, Pål- Dag Line¹, Magnus Øvrehus², Dag Olav Dale¹, Hege Pihlstrøm¹, Ingar Holme⁵, Friedo W. Dekker⁶ and Hallvard Holdaas¹

Mortality

- Hazard ratio (HR) for all-cause death was 1.30 (95% confidence interval [CI] 1.11-1.52, p=0.001).
- HR for cardiovascular death (HR 1.40, 95% CI 1.03-1.91, p=0.03)

Mortality differs from other studies

Other studies have not found increased mortality.

However, follow-up time was shorter

Perioperative Mortality and Long-term Survival Following Live Kidney Donation

Dorry L. Segev, MD, PhD
Abimereki D. Muzaale, MD, MPH
Brian S. Caffo, PhD
Shruti H. Mehta, PhD
Andrew L. Singer, MD, PhD
Sarah E. Taranto
Maureen A. McBride, PhD

Robert A. Montgomery, MD, DPhil

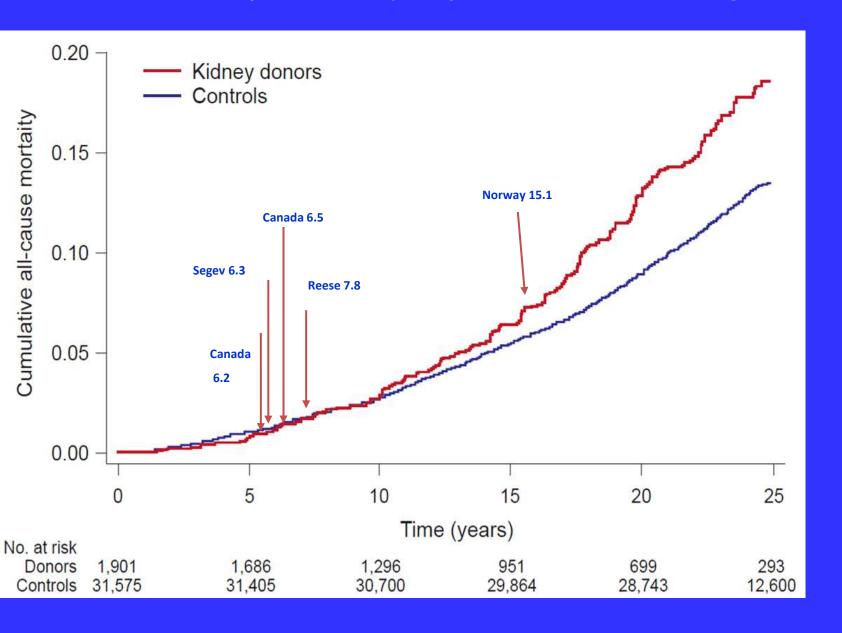
Context More than 6000 healthy US individuals every year undergo ne for the purposes of live donation; however, safety remains in question be gitudinal outcome studies have occurred at single centers with limited general part of the context of

Objectives To study national trends in live kidney donor selection and o estimate short-term operative risk in various strata of live donors, and to con term death rates with a matched cohort of nondonors who are as similar to cohort as possible and as free as possible from contraindications to live don

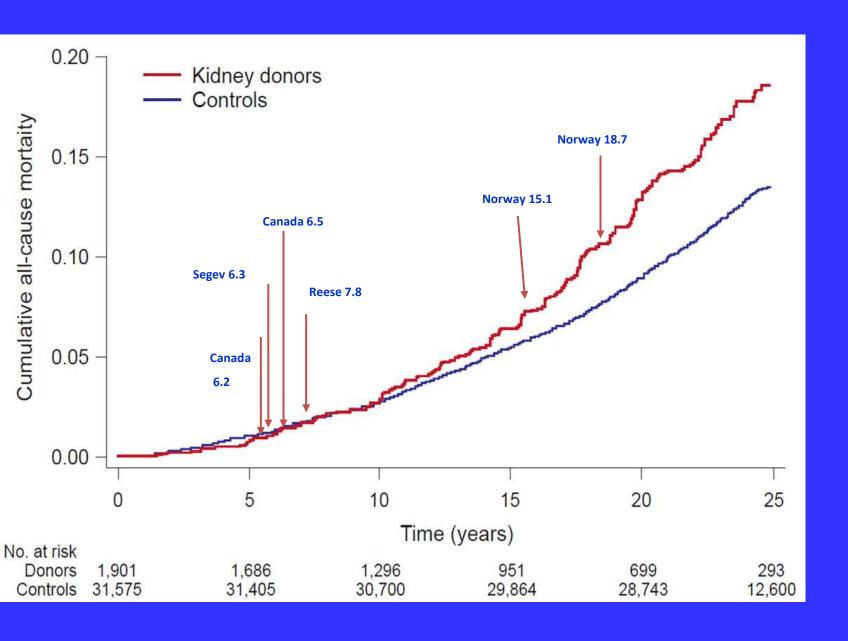
Design, Setting, and Participants Live donors were drawn from a mational registry of 80 347 live kidney donors in the United States between Aprand March 31, 2009. Median (interquartile range) follow-up was 6.3 (3.2-A matched cohort was drawn from 9364 participants of the third National

BMJ

BMJ 2012;344:e1203 doi: 10.1136/bmj.e1203 (Published 1 March 2012)


RESEARCH

Cardiovascular disease in kidney donors: matched cohort study


© 00 OPEN ACCESS

Amit X Garg professor¹²³, Aizhan Meirambayeva epidemiology student¹², Anjie Huang biostatistician³, Joseph Kim assistant professor³⁴, G V Ramesh Prasad associate professor⁴, Greg Knoll professor⁵, Neil Boudville associate professor⁶, Charmaine Lok associate professor⁴, Philip

Different follow-up time may explain different findings

Update with longer follow-up - Similar results

ESRD

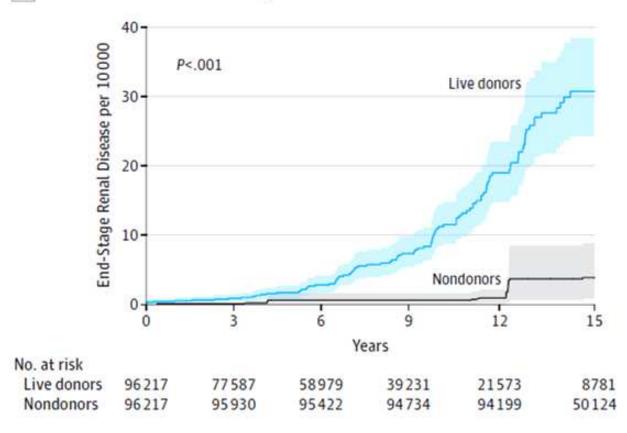
 HR for ESRD was greatly increased (11.38, 95% CI 4.37-29.63, p<0.001)

http://www.kidney-international.org

clinical investigation

© 2013 International Society of Nephrology

Long-term risks for kidney donors


Geir Mjøen¹, Stein Hallan^{2,3}, Anders Hartmann¹, Aksel Foss¹, Karsten Midtvedt¹, Ole Øyen¹, Anna Reisæter¹, Per Pfeffer¹, Trond Jenssen¹, Torbjørn Leivestad⁴, Pål- Dag Line¹, Magnus Øvrehus², Dag Olav Dale¹, Hege Pihlstrøm¹, Ingar Holme⁵, Friedo W. Dekker⁶ and Hallvard Holdaas¹

Other studies on ESRD

- "Risk of End-Stage Renal Disease Following Live Kidney Donation" Muzaale et al, JAMA 2014
 - Around 8 10 times increased risk for ESRD
- Reese et al. et al. "Mortality, Cardiovascular and End-Stage Disease outcomes among Older Live Kidney Donors" JASN 2013; 24: 71A
 - Around 7 8 times increased risk for ESRD

Figure 1. Cumulative Incidence of End-Stage Renal Disease in Live Kidney Donors and Matched Healthy Nondonors

A Cumulative incidence of end-stage renal disease

Muzaale et al. JAMA 2014;311:579

Time to ESRD?

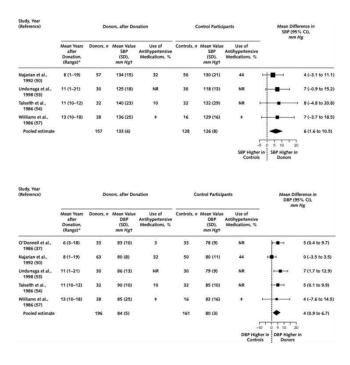
 Norwegian study mean time to ESRD was 18 years

 Study by Matas et al (AJT 2018) mean time to ESRD 27 years

 Developing ESRD depends on a "second hit". New disease developing after donation.

Hypertension

Hypertension


 Meta analysis of available studies on blood pressure and hypertension

 "Kidney donors may have a 5-mm Hg increase in blood pressure within 5 to 10 years after donation over that anticipated with normal aging."

Annals of Internal Medicine®

From: Meta-Analysis: Risk for Hypertension in Living Kidney Donors

Ann Intern Med. 2006;145(3):185-196. doi:10.7326/0003-4819-145-3-200608010-00006

Figure Legend:

Meta-analysis of controlled studies of systolic blood pressure (SBP) and diastolic blood pressure (DBP) at least 5 years after kidney donation.

The size of each square is inversely proportional to the variability of the study estimate. NR = not reported. *Studies are arranged by the average number of years after donation. †A summary of various methods to assess blood pressure are presented in the Results section. ‡Study reported that a percentage of donors were taking antihypertensive medication but did not quantify the amount.

Time to Hypertension?

Sanchez et al AJT 2018

 Hypertension developed in 4% 10% and 51% at 5, 10 and 40 years after donation

ORIGINAL ARTICLE

Hypertension after kidney donation: Incidence, predictors, and correlates

Otto A. Sanchez¹ | Laine K. Ferrara¹ | Sarah Rein¹ | Danielle Berglund² | Arthur J. Matas³ | Hassan N. Ibrahim⁴

¹Division of Renal Diseases and Hypertension, University of Minnesota, Minneapolis, MN, USA

²Informatics Services for Research and

Incidence of postdonation hypertension, risk factors associated with its development, and impact of type of treatment received on renal outcomes were determined in 2700 kidney deposed by a constituted beared ended adjusted beared entered

AIT

Preeclampsia

 Higher incidence of preeclampsia in donors (Garg et al 2015)

 Two studies found increased preeclampsia in pregnancies after donation vs. before

(Reisæter et al. 2009; Ibrahim et al 2009)

Maternal and Fetal Outcomes of Pregnancies after Cohort Entry in Living Kidney Donors and Matched Nondonors.

Table 3. Maternal and Fetal Outcomes of Pregnancies after Cohort Entry in Living Kidney Donors and Matched Nondonors.				
Outcome	Pregnancies in Donors (N=131)	Pregnancies in Nondonors (N=788)	Odds Ratio (95% CI)	P Value*
no. of events (%)				
Primary outcome: gestational hypertension or preeclampsia	15 (11)	38 (5)	2.4 (1.2–5.0)	0.01
Secondary outcomes				
Gestational hypertension†	7 (5)	17 (2)	2.5 (0.9–6.5)	0.06
Preeclampsia	8 (6)	21 (3)	2.4 (1.0–5.6)	0.05
Cesarean section	41 (31)	224 (28)	1.2 (0.7–2.1)	0.44
Postpartum hemorrhage	≤5 (≤4)‡	24 (3)	0.9 (0.3–2.9)	0.91
Preterm birth with gestation of <37 wk	10 (8)	52 (7)	1.2 (0.5–2.5)	0.70
Low birth weight of <2500 g	8 (6)	31 (4)	1.7 (0.7–4.0)	0.21

^{*} P values were derived from random-effects logistic-regression models for binary outcome data, accounting for the correlation structure within matched sets and in women with multiple pregnancies.

[†] When diagnostic codes for both gestational hypertension and preeclampsia were present in a given pregnancy, the outcome was counted as a diagnosis of preeclampsia.

 $[\]ddagger$ To comply with privacy regulations for minimizing the chance of identification of a study participant, numbers of participants are suppressed in the case of 5 or fewer participants (reported as \le 5).

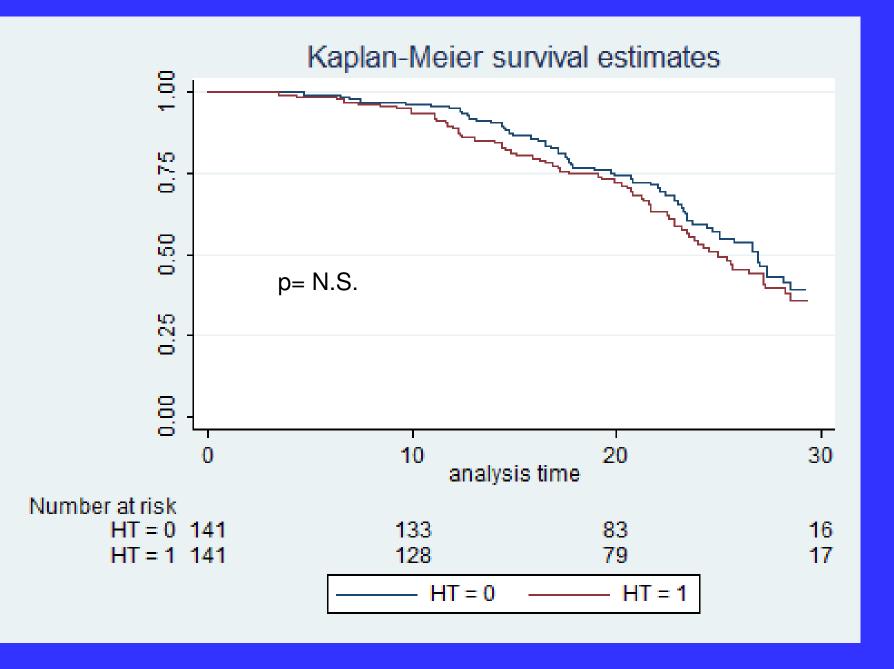
What about donors with mild hypertension?

Donors with mild hypertension

 Donors with available blood pressure data in the period 1963-2007 were included.

 Hypertension was defined retrospectively as BP>140/90 or use of medication.

 Does mild hypertension at donation affect long-term survival?


Methods

 Hypertensive and normotensive donors were matched 1:1 for age, gender and time of donation.

Results

 Mean age among hypertensive donors was 57.7 years and 44,3 % were male. During a median follow-up of 16.9 years there were 96 deaths among donors with hypertension.

Mean BP 147/89 mmHg vs. 124/77 mmHg

All cause mortality risk in HT donors vs normotensive donors is similar

Results

 We found no difference in long-term survival among older/middle-aged donors with and without mild hypertension

 Due to limited observation time and mean age of 56 years old these results are not applicable to young donors.

Interpretations

American Journal of Transplantation 2004; 4: 694–697 Blackwell Munksgaard Copyright © Blackwell Munksgaard 2004

doi: 10.1111/j.1600-6143.2004.00424.x

Personal Viewpoint Forum

Risk Appreciation for Living Kidney Donors: Another New Subspecialty?

Robert W. Steiner*

Department of Medicine, University of California at San Diego, School of Medicine, San Diego, CA *Corresponding author: Robert W. Steiner, rsteiner@UCSD.edu The lack of explicit quantification of risk, however, complicates both formulation of center policy and communication with donor candidates. Particularly for donors with IMA's, by using population screening studies and end stage renal disease (ESRD) epidemiologic data (4,5) we can defensibly estimate the risks associated with the IMA that such

Interpretation

- Kidney donation may be associated with longterm risks to the donor
- Absolute risks seem relatively small, at least in low risk populations (middle aged caucasians).
- Not all populations are low risk (for example young afro-americans)
- Long observation period before risks appear

Steiner et al, AJT, 14:538-44

Donor loses 30% renal function as a result of nephrectomy. Therefore has less reserve.

All else being equal, a donor will have a low GFR years before a similar non-donor.

Therefore with normal loss of GFR or with development of disease, a donor has increased risk.

American Journal of Transplantation 2014; 14: 538–544 Wiley Periodicals Inc.

Personal Viewpoint

© Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons

1-1-10-14-1-1-1-1000

Estimating Risks of *De Novo* Kidney Diseases After Living Kidney Donation

R. W. Steiner^{1,*}, J. H. Ix^{1,2,3}, D. E. Rifkin^{1,2,3} and B. Gert^{4,5,6}

¹Division of Nephrology, Department of Medicine, UC San Diego School of Medicine, San Diego, CA

Introduction

Transplant centers often refuse candidates for living kidney donation with hematuria or increased diabetic risk because

Steiner et al, AJT, 14:538-44

The majority of kidney disease begins in middle age:

- normal young donors are at increased longterm risk than normal older donors
- low normal GFR is a risk for ESRD when kidney disease starts

American Journal of Transplantation 2014; 14: 538-544 Wiley Periodicals Inc.

Personal Viewpoint

© Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons

Estimating Risks of De Novo Kidney Diseases After Living Kidney Donation

R. W. Steiner 1,*, J. H. Ix 1,2,3, D. E. Rifkin 12,3 and B. Gert 4,5,6

¹ Division of Nephrology, Department of Medicine, UC San Diego School of Medicine, San Diego, CA

Introduction

Transplant centers often refuse candidates for living kidney donation with hematuria or increased diabetic risk because

Donor risks and remaining lifespan

 20 year old healthy donor has 60 remaining years to live

60 years old donor with hypertension, has 20 years

 Long-term risk is likely to be proportional to remaining lifespan

Steiner AJT 10:737-741

 Some older donors with isolated medical abnormality such as mild hypertension will be at lower or about the same overall baseline lifetime risk for ESRD as young «normal» candidates.

> American Journal of Transplantation 2010; 10: 737–741 Wiley Periodicals Inc.

Personal Viewpoint

© 2010 The Author Journal compilation © 2010 The American Society of Transplantation and the American Society of Transplant Surgeons

doi: 10.1111/j.1600-6143.2010.03023.x

'Normal for Now' or 'At Future Risk': A Double Standard for Selecting Young and Older Living Kidney Donors

Steiner AJT 10:737-741

 To remain ethically consistent, transplant centers who accept any young donor can not refuse older donors with IMAs.

> American Journal of Transplantation 2010; 10: 737–741 Wiley Periodicals Inc.

Personal Viewpoint

© 2010 The Author

Journal compilation © 2010 The American Society of

Transplantation and the American Society of Transplant Surgeons

doi: 10.1111/j.1600-6143.2010.03023.x

'Normal for Now' or 'At Future Risk': A Double Standard for Selecting Young and Older Living Kidney Donors

Consequences

Inform donors, change written information

Change criteria for older donors

Written information

All donors receive written information

 Used to be "studies have shown that donors live longer....."

Now it has changed

For You who have been asked to donate a kidney

For You who are asked to donate a kidney

There has been a concern that the remaining kidney may be susceptible to long-term damage due to reduced renal function.

Two studies, one in Norway with 2000 kidney donors, and one in USA, have shown that donors might have a small increased risk for renal replacement therapy

For You who are asked to donate a kidney

In the Norwegian study we also found that there may be an Increased long-term risk for cardiovascular mortality compared to a healthy population.

We inform of our study so potential donors might take the results into account when deciding whether to donate a kidney. This also reinforces the importance of participating in the regular follow-up after donation.

Renal function in potential living donor

Measured GFR by age brackets

Age (mL/min/1.73m2)

Below 50 90

50-70 130-age

Above 70 60

Blood pressure requirements

Office BP \leq 140/90 mmHg or 24 h ambulatory BP \leq 130/80 .

Donors above 60 years of age with "mild" hypertension are accepted using one BP medication

Diabetes/Impaired glucose tolerance

Diabetics are not accepted as donors

Donors above 60 years of age are accepted with impaired glucose tolerance

Donors below the age of 60 must have normal OGTT

Proteinuria

Donors with albuminuria are not accepted.

Donors above 60 years may have microalbuminuria

Summary living donor

- All donors face long term risks.
- The predictive value of a normal donor evaluation is low in younger donors, since most diseases will occur later in life.
- Older donors are relatively healthier, and have a shorter remaining lifespan.
- Choose older donors when possible

Thank you